Gene Profiling using Suffix Trie
Hidden Markov Models

Bernhard K. Bauer
bauerb@in.tum.de

December 6, 2009

mailto:bauerb@in.tum.de

Contents

1 Motivation

2 Other sequence search methods
2.1 Sequence alignment methods . .
2.2 HMMER

3 Suffix trie HMMs

3.1 Hidden Markov models
3.2 HMM structure
3.3 Inference.
3.4 Model construction
3.4.1 Parameter estimation . .
3.4.2 Suffix trie construction . .

3.5 Optimizations for long sequences

4 Gene searching with suffix trie HMMs
4.1 Basemodel

4.2 Coding sequence ranking
4.3 Whole genome searches

4.3.1 Search hit significance . .

5 Evaluation

5.1 Datasetsused
5.2 Model convergence
5.3 Effect of maximum depth
5.4 Gene searching

6 Conclusion
6.1 Further work
6.2 Summary

10
11
13
13
13
14

17
17
17
18
19

23
23
24
24
26

Contents

1 Motivation

With the advent of cost-effective high-throughput sequencing methods, the amount of
sequenced biopolymer data such as DNA, RNA or amino acid sequences has grown
in an exponential way. The EMBL Nucleotide Sequence Database! contains over 150
millions of entries for a variety of organisms ranging from viruses and procaryotes to
high mammals. However, this abundance of data brings with itself several problems:

First, the huge datasets available to researchers necessitate efficient databases and
search methods to find relevant entries among the ever-growing sea of data. Second, the
growth in available data quantity is often accompanied by a decrease in data quality,
which manifest itself not only in questionable data, but also in faulty metadata brought
about by human error in annotating the data.

As an example, take phylogenetic analysis, which is based on comparing homologuous
sequences like rRNA segments or certain genes from different species or strains, creating
phylogenetic trees which capture ancestral information. For this, it necessary to find the
target sequence in every species involved in the phylogenetic analysis, using for example
the EMBL database, which offers genome files for a multitude of organisms in a plain
text format. Besides the genome DNA sequence, an EMBL file contains annotations
describing “coding sequences”, which are subsequences coding a gene each. While the
genes themselves can be found automatically, the descriptions of the genes and genomes
are written by humans, who commit errors or label genes in a non-standard way, therefore
making description searches for a specific gene ineffective. Sometimes, annotations are
not even present, although it is certain from a biological standpoint that the organism
in question possesses the searched for gene. In case a direct metadata search is not
successful, more complicated methods can be used to look for the target gene.

The approach described herein constructs a stochastic sequence model from already
found gene sequences and uses this model to look for similar sequences either in the
whole genome or among the coding sequences defined for it. The model is called a
“suffix trie hidden Markov model”, utilizing a hidden Markov model based on a suffix
trie of the sequences seen so far. The stochastic nature of the model enables it to find a
meaningful and stochastically sound evaluation of the relevance of a sequence as well as
the reliability of the search results.

"http://www.ebi.ac.uk/embl/

http://www.ebi.ac.uk/embl/

1 Motivation

2 Other sequence search methods

2.1 Sequence alignment methods

The Needleman-Wunsch and Smith-Waterman [15] algorithms calculate optimal global
and local alignments, respectively, using a dynamic programming approach. In particular
local alignments can be used to search for a subsequence similar to a given sequence in a
database. However, these algorithms prove prohibitively expensive for large databases,
taking O(n - m) space (and time), where n and m are the length of the two sequences
(or rather the length of the search sequence and the combined length of all sequences in
the database, respectively).

The BLAST algorithm [2] is a heuristic for calculating local alignments, running much
faster, while possibly yielding sub-optimal results.

A big disadvantage of these single sequence alignment methods is that they only deliver
results for a single search query. Given multiple variants of a sequence, the search would
have to carried out multiple times, with no obvious way of combining the search results.
Nevertheless, the statistics used in BLAST turn out to be also applicable to this work.

2.2 HMMER

The HMMER software package! implements a profile hidden Markov model [9] con-
structed from known sequences to search sequence databases.

While the work described here uses the same general approach (albeit with a different
model), the biggest drawback of HMMER is its reliance of multiple sequence alignments
(MSA) to construct its profiles. Because multiple sequence alignment in general is NP-
hard [18], again heuristics have to be employed first to construct the MSA. However,
starting with a suboptimal alignment can in turn yield suboptimal search results. On
the other hand, constructing a better alignments also takes more time.

"http://hmmer. janelia.org/

http://hmmer.janelia.org/

2 Other sequence search methods

3 Suffix trie HMMs

3.1 Hidden Markov models

A hidden Markov model (HMM) consists of a discrete Markov process, i.e. a sequence of
discrete random variables where each variable (the state) only depends on the previous
one, and a sequence of observation or output variables that each depend only on the state
in the corresponding time step. Figure 3.1 illustrates this with a Bayesian Network.

oo

Figure 3.1: A hidden Markov model. Shaded circles indicate observed variables, un-
shaded circles hidden ones.

Because of the independence properties of an HMM, exact inference can be carried out
in an online manner, where every observation needs to be processed only once, thereby
taking time linear in the sequence length and constant space for a constant model. To
achieve this, we use a vector a called the forward message, which is updated for every
time step with the respective observation. The vector a represents the probability for
being in a certain state and observing the given output character, given the sequence of
characters that has been observed so far:

Oé(t)z = PSt,Ot|01 t,l(i,Otfol,...,t—l% 1 S 7 S]{3, (31)

where k is the number of states, n is the sequence length, and we define the sequence of
output variables as

Oi,...,j = (Oi70i+17"')oj)a 1 Slgjgn
and the sequence of actually observed characters as

Oi,...,j = (Oi,oi+1, .. .,Oj), 1 S 1 § j § n.

3 Suffix trie HMMs

For practical inference, we use a scaled version &(t), which represents the conditional
probability for each state, obtained by dividing a element-wise by the conditional prob-
ability ¢(t) of the observed output, which is in turn calculated by marginalizing o over
all states:

k
a(odor 1) =D alt) (3.2)

ilor, =20 ol -y oy (3.3)

() Z§:1 a(t);

Likewise, for backwards inference we use a backwards message (3(t) and its scaled
version 3(t):

.....

,,,,,

B(t)i == Ps,jo,. (ot n), 1<i<k (3.4)

.....

If we define the output probability as b;(0) := Pp,|s,(0]i) and the state transition
probability as a;; := P, s, (i]j), we can update o and 3 as follows:

A (X) - aza) - bilor)
a(t+1); = 0) (3.5)

(Z?:l Blt+1);- ai,j) ~bi(or41)

Bty = - , 1<i<k (3.6)

The total probability of the output sequence is given by the product of all values of

c(t):

n

Po(s) =[] et (3.7)

t=1

A good and deeper introduction to hidden Markov models can be found in [13].

3.2 HMM structure

State transition model. The state transition model for the hidden state is based on
a suffix trie [6]. Suffix tries store the prefixes of a string or a set of strings in a tree
structure, with every leaf of the tree corresponding to one suffix and every inner node
corresponding to a prefix of a suffix, i.e. a substring.

An inner node in a trie, corresponding to a substring v, has links to every substring
stored in the trie that is obtained by appending a single character to v. In addition to
these forward links, every node has a link to its direct suffix, which is neccessary for
efficient trie construction [17] and searching.

10

3.3 Inference

N

\
\ ,
\ ’ \ ~_ 7
’ \ ~
\ . N \ v
, ~
@ \
,
,
7z
,
a
’
/
,
,
‘

Figure 3.2: A suffix trie.

Based on the trie for the set of read sequences, we construct a state transition model
with every node in the trie corresponds to a state, and a transition probability assigned
to every outgoing link from a state. There are two variants possible for transitions to a
state of lower depth in the trie:

1. Every state has a transition to the root state or

2. Every state has a transition to its direct suffix.

In practice, only the second variant was implemented, because by following the back-
links, one can always arrive at the root state, and so intuitively the second model seems
to be more powerful than the first one.

In contrast to a classical HMM, we allow an arbitrary number of suffix transitions
followed by one forward transition per time step.

Output model. The output model is deterministic, with the output character for every
state equal to the last character of its corresponding substring. This determinism is what
allows us to keep the number of possible states at each time step small and so allows for
efficient inference.

3.3 Inference

Forward pass. Using a dense representation of the state distribution vector, which
simply lists the probablity for every state in the model, would make inference intractable.

11

3 Suffix trie HMMs

Therefore we use a sparse representation, storing a list of those states that have a positive
probability, along with their corresponding probability. Because of the deterministic
output model, we know that at every time step, the only possible states are suffixes of
the word read so far (because every other state would have an output probability of zero
at some point). This means that the space needed for storing a state distribution is at
worst linear in the length of the word read so far and bounded by the maximum depth
of the trie.

(o] a oa
— J———)
co a coa

— >)

oco a ocoa
—~(O——0
coco a cocoa
—~O——0

Figure 3.3: State transitions for the forward inference step.

In addition, we can use the same inference algorithm to efficiently calculate all tran-
sition probabilities from a state at time ¢t to some state at time ¢ + 1 in a single pass
over the state list. To do this, we note that the probability for each state is the sum
of the probabilities for each incoming transition times the probability for the respective
predecessor state:

P(s) = ZP(S') -P(s' — s)

As illustrated by figure 3.3, we can calculate the probability including backlinks for
each in the left column in turn, multiplying it by the probability for the character
transition to get the probabilities for the states in the right column.

Backwards pass. Inference in the backwards pass seems more difficult at first, because
while there is only a limited number of transitions out of a state, there is a much bigger
number of transitions going into most states, because of the suffix links and the fact that
a transition can encompass more than one of them at a time. Fortunately, it turns out

12

3.4 Model construction

that we can use the same line of reasoning as for the forward pass to only track prefixes
of the string read so far.

3.4 Model construction

3.4.1 Parameter estimation

For constructing the model parameters we use an online version of the standard Baum-
Welch algorithm, i.e. one that only looks at each sequence once. Put simply, the classical
Baum-Welch algorithm counts the expected state transitions using the forward and
backwards messages a and 3 (see section 3.1) based on a starting set of parameters,
and updates the parameters with these counts, setting each transition probability to
the relative expected transition frequency. This is then repeated until the transition
probabilities converge.

To create an online version of this algorithm, we simply use the intermediate transition
counts after each sequence to calculate the probabilities for the next sequence. This is
similar to using stochastical instead of batch updating for backpropagation in neural
networks.

3.4.2 Suffix trie construction

So far, we have only concerned ourselves with calculating the model parameters for a
given trie structure. Now we look at constructing the trie itself. For theoretical purposes,
we assume an infinite suffix trie with some transition probabilities set to zero, as seen in
figure 3.4. Of course, in practice we only need to materialize nodes that can be reached
with a positive probability.

a/ |b\c b\c
iac icbicc:
F v 22R2ANA2 1A

Figure 3.4: An infinite suffix trie.

13

3 Suffix trie HMMs

A big problem with the initial choice of parameters in the Baum-Welch algorithm is
that a probability that is zero stays zero after each iteration of the algorithm. This means
that a trie consisting only of the root state at the start would stay that way forever.
To this end, we use pseudo-counts for the transition counts as a form of smoothing.
The pseudo-counts for a transition from a state is chosen to be half the probability
of that state. The reason for this becomes apparent when we look at the sum of the
pseudo-counts at each time step, which is 1. The expected transition counts at each
time step also increase by 1 during the update step, which means that we use a simple
estimation for the new transition count before actually calculating them. Other pseudo-
count distributions would also be possible, like a uniform distribution over all transitions.

After the suffix trie has been established this way by learning all sequences, the learning
process can be repeated like in the normal Baum-Welch algorithm, that is updating all
parameters at the end of each iteration instead of after each sequence, and without
pseudo-counts. The first phase of learning is called the “online phase”, while this phase
is called “batch phase”.

3.5 Optimizations for long sequences

Restricting the number of states in the model. To keep the space requirement for
the model low, it seems prudent to restrict the number of states, which would otherwise
grow as O(n? - m). To that end, we define a maximum depth d in the trie, not adding
any new states that are deeper than d. This lowers the number of states to O(d-n -m),
which is in practice for constant d o(n - m), because of shared prefixes.

Space/time tradeoff for training. For long sequences, the intermediate space needed
for training, which grows as O(d - n), can still be prohibitively large. Therefore, we can
apply a tradeoff, reducing the space needed in exchange for an increase in run time.

We first formulate the learn step for a single sequence as a recursive function that
calculates the § vector from the corresponding « vector, updating the transition counts
along the way. Pseudo code for this function is shown in algorithm 1. The functions f
and ¢ calculate the o and (8 updates, respectively.

The idea of the tradeoff is not to store the state distributions for all time steps, instead
recalculating some of them as needed. As can be seen in algorithm 2, we calculate the o
values for the first half of the training sequence without storing them and then recursively
call the learn method again on both halves. Because we only need [log, n | calls, the space
requirement is reduced from O(d - n) to O(d - logn), while increasing the time needed
from O(d - n) to O(d - n -logn). This approach is similar to a k-level checkpointing
algorithm [5, 16, 19] with k£ = [logy n].

To make better use of available main memory, for small n we can fall back to the linear
space (and time) learning algorithm. In the pseudo code, this behavior is governed by
the parameter linearThreshold.

14

3.5 Optimizations for long sequences

Algorithm 1 LINEARLEARN
Parameters: oy,t,3,,n
Returns:
if t <n then
a1 — flayg)
Bi41 < LINEARLEARN(ay41,t + 1, B, n)
UPDATE(cv, Biy1)
Bt — 9(Brs1)
return [
else
return [,
end if

Algorithm 2 DivIDEANDCONQUERLEARN
Parameters: oy,t,3,,n
Returns: [,
if t <n — linearThreshold then

m o [557]

Q <— O

fori=t+1tomdo

a— f(a)

end for

Ol —
Bm — DIVIDEANDCONQUERLEARN(y,, m, By,)
B¢ < DIVIDEANDCONQUERLEARN((o, t, B, m)
return [

else
return LINEARLEARN(ay,t, B,,n)

end if

15

3 Suffix trie HMMs

16

4 Gene searching with suffix trie HMMs

4.1 Base model

To compare the target sequence to other sequences, we first need a model for them, a
so-called null or base model. The simplest base model assigns the same probability to
each sequence of the same length. That means that for sequence of length n over an
alphabet X, the base model is

Ppy(s) = X" (4.1)

Given a model M and a base model B, we calculate a log-odds score S for a sequence
s as follows:

i PM(S)
S =log Pyls)

Using a log-odds score instead has the advantage that it doesn’t suffer from floating
point underflow as using the raw probability value would be prone to. Furthermore, it
allows us to view the total score as a sum of individual scores, which can be used for
searching the whole genome, as will be seen in section 4.3.

The base of the logarithm can be chosen as 2 to get a score in bits, or e for easier
calculation of derived values (see sections 4.2 and 4.3.1). In any case, bit scores and
natural scores only differ by a constant factor, so it is easy to convert one to the other.

(4.2)

4.2 Coding sequence ranking

For finding the target gene among the coding sequences defined in a genome file, we first
assume two things: that the target gene is exactly one of the coding sequences, and that
all coding sequences are stochastically independent.

These assumptions are certainly not always the case. For example, in some genome
files, the annotations overlap, with one annotation describing an “alternative” subse-
quence coding the target gene, thus violating both assumptions. Nevertheless, they are
necessary for inferring a probability distribution over the coding sequences. How to filter
out genomes not containing the target gene at all is discussed in section 4.3.1.

Given a list g = (91,92, . .., 9n) of coding sequences, the probability that sequence 1 is
the target gene X can be calculated using Bayes’ rule:

Pxcli,g) _ Pex(gli) - Px(i)
Pa(g) Pa(g)

Pxa(ilg) = (4.3)

17

4 Gene searching with suffix trie HMMs

The “evidence probability” Pe(g) = >_7_ Pox(8,7) = 27— Poix(8li) - Px(j) is
independent of ¢ and can thus be subsumed into a normalizing factor «. In practice,
one can simply work with the unnormalized values up until the final step and then scale
them down so that their sum equals 1.

Furthermore, if we assume that all sequences have the same a priori probability Py (i),
the term is also a constant and can be canceled out:

Pxclilg) = Pox(gli) - o (4.4)

If sequence i is the target gene, it is generated by the model M, while the other
sequences are generated by the base model B. Assuming that all sequences are pairwise
independent, we get:

i) = A ,,a:PM(gi).n A
Pax(gli) = Pu(gi) jl;[PB(gj) Poloi) EPB(QJ) (4.5)

The product of the base probabilities H?Zl Pg(g;) is a constant and can also be moved

into a. The other term, 1;‘;7((;7:)), equals the likelihood odds, which we can calculate from

the score S;, resulting in:

Pix(gli) = ¢% - a (4.6)
Writing out the normalizing factor a, we find that

S.
e 1
Pox(8l) = s (4.7)
| Z;jbzl eSi
which corresponds to applying the softmax function, which is commonly used as an
activation function for neural networks, to the sequence scores.

4.3 Whole genome searches

Sometimes the genome file does not contain any annotations besides the genome se-
quence. In these cases, we would still like to look for the target gene in the genome
sequence, assuming that it is surrounded by random sequences.

While assigning a score to a sequence has some similarities to global sequence align-
ment, in a way aligning a sequence to a model, searching for a subsequence is similar to
local alignment.

The probability for a sequence s factors into a product of a conditional probability for
each character, depending on the previous ones:

P(s) = P(s1) - P(sa|s1) - P(ss|s2,81) ... P(sn|Sn—1,.-.,51) (4.8)

Likewise, the total score S for a sequence is a sum of individual scores for each char-
acter. Therefore, looking for a subsequence of high probability in the genome sequence

18

4.3 Whole genome searches

amounts to looking for a subsequence of high total score in the sequence of character
scores. This is a problem known as the “maximum contiguous subsequence sum” prob-
lem, and it can be solved in time linear in the sequence length [3], using an algorithm
that can interestingly be seen as a variant of the Smith-Waterman algorithm [15] on a
one-dimensional array.

In addition, we can use another linear time algorithm [14] to find not only the highest
scoring subsequence, but all subsequences that cannot be lengthed to yield a higher
score.

As in the previous section, we can calculate a probability distribution over all sub-
sequences found in this manner. Again, we assume an uniform prior over all found
subsequences. While this would not deserve mention by itself, it is important to bring
up that we assume a prior probability of zero for all other subsequences. This is justified
to some extent because it seems sensible to assume that the target gene is a locall
maximal subsequence in terms of score. In addition, calculating scores for all WTH
subsequences of a sequence of length n would seem infeasible.

4.3.1 Search hit significance

In long random sequences, high scoring subsequences are expected to occur simply by
chance. Therefore, it seems desirable to asses the significance of a search hit in order
to make sure that it was actually generated by the target sequence. We do this using
Karlin-Altschul statistics [1], which are also applied within the BLAST local alignment
tool.

The highest scoring match S in a random sequence follows a Gumbel distribution,
which has the following cumulative distribution function [4, 11]:

P[S < z] =exp {—ef)‘(‘rf“)} (4.9)

One could expect the chances of a high score in a random sequence to increase with
the sequence length. Indeed, as illustrated in figure 4.1, the expected highest score grows
with the logarithm of the sequence length [7]:

logn
A

P[S — >z =1—exp [—/{: : e_m] (4.10)

Model calibration. Using these two equations, we can calibrate a given model to give
an assessment of a search hit’s significance.

We create m random sequences with length ng and search for the highest-scoring
subsequence in each of them. The resulting scores are saved to x;, 1 <7 < m.

Next, we fit the parameters p and A of the Gumbel distribution to the obtained scores
[11]. The scale parameter A can be fitted using the empirical variance s? of the scores:

s

V652

A= (4.11)

19

4 Gene searching with suffix trie HMMs

Figure 4.1: Distribution of highest scoring subsequences for 10,000 random sequences of
lengths starting at 25 and doubling (analoguous to figure 4 in [4]). According
to Karlin-Altschul statistics, in the log-plot the curves are expected to shift
right by the same distance with each doubling in sequence length.

A more accurate approach would calculate a maximum-likelihood estimate for A [11],
but empirical evaluation showed that estimating A from the variance gives sufficient
accuracy. Besides, according to [4], for log-odds scores using a natural logarithm, \ = 1.
Experiments gave values of A that were pretty close to 1, therefore in the built prototype
an option is given to either set A to 1 or fit it to the random distribution using the above-
mentioned formula.

The location parameter p can be calculated from A using the following formula:

1 1 &
= ——=log | —) e A 4.12
- g[mz] w12

Combining equations 4.9 and 4.10, we can calculate k from \ and i
k=— (4.13)

Calculating significance measures. Given a search hit score S, we can calculate a
normalized score S" [8] using the following equation:

S"= S\ —log(k - n) (4.14)

The normalized score for a random sequence follows a standard Gumbel distribution
with 4 = 0 and A = 1. Now we can calculate the F- and P-values known from BLAST

[2]:
The P-value, which is the probability that the highest score in a random sequence is
at least x, can be read directly off the cumulative distribution function:

P=P[S >z]=1—exp(—e¥) (4.15)

20

4.3 Whole genome searches

The E-value is the expected number of hits with score at least x in random sequence.
If we assume that the hits in a sequence of sufficient length are indenpendent, the number
H of hits with minimum score x follows a Poisson distribution with mean E:

Eh —-FE
Py (h) = = (4.16)
h!
For h =0, P[S' <] = Py(0) =e ¥, so0
E=¢". (4.17)

If we look at the E-value in terms of the unnormalized score S, we find that E =n-k-
e~ which makes sense intuitively: E is linear in the sequence length and exponential
in the score value. The value of A here serves a scaling factor for the score.

21

4 Gene searching with suffix trie HMMs

22

5 Evaluation

5.1 Data sets used

For the following evaluations, two data sets were used: One consisting of several genes
from human papillomaviruses (HPV) and one consisting of heat shock protein (HSP70)
genes from several organisms.

Human papillomavirus genes. From a gene database of human papillomaviruses, sev-
eral E1, E2 and L1 genes were extracted. The number of extracted genes can be seen
in table 5.1. The reason for the different numbers is that not all genomes contained all
of the genes. The gene sequences were randomly split into training and test sets, using
aroung 10% of the data set for testing. For the E2 gene, this resulted in a training set
consisting of 165 sequences and a test set consisting of 21 sequences.

In order to make better use of the available data, which was of mixed quality, for
evaluation of the gene search a cross-validation approach was used. Hereby the data set
for each gene was split randomly into 10 groups, with each of these groups constituting a
test set for a model trained from the other groups. Because the objective in gene search
is to find the target gene in a database containing other genes also, for each test set the
corresponding genome files with annotations from the EMBL database were used.

Gene | # of sequences
E1l 188

E2 188

L1 198!

Table 5.1: Number of HPV gene sequences extracted for evaluation.

Heat shock protein genes. The second data set consisted of 850 genes coding the
heat shock protein HSP70, from several organisms. Because of the large size of the
full EMBL genome files for these organism, the cross-validation approach was not used
here. Instead, from the data set a random sample of 84 gene sequences was extracted
for testing, again using the rest of the gene sequences for training and the full EMBL
files corresponding to these 84 sequences, together 566 MB in size, for evaluation.

!Containing 6 duplicates of other genes, corresponding to 192 genomes.

23

5 Evaluation

5.2 Model convergence

The Baum-Welch algorithm seeks to modify the HMM parameters to maximize the
likelihood of the observed sequences and guarantees to increase it in every iteration,
although it may converge to only a local maximum. Therefore, the first test of the
constructed model is to see whether the parameters actually converge, and whether it is
able to predict sequences with high probability. We measure this with the perplexity in
bits, which is the negative base 2 logarithm of the probability assigned to a sequence.
The average perplexity is the value of the perplexity divided by the sequence length.

2,5

2 il
) I |
5 |
> 1,5 i d
I
()
a
[0
a9
o
<
0,5
0
— new sequence before learning — ...after learning
sequences learned so far — test set

Figure 5.1: Average perplexity of HPV E2 genes during the online learning phase.

As can be seen in figure 5.1, the model already converges during online learning,
with the perplexity of the test set at the end not much higher than the perplexity of the
training set. Interestingly, the sharp decreases in test perplexity are mostly accompanied
by spikes in the perplexity of the sequence about to be learned, probably because these
sequences are less similar to the ones already learned, and so learning them increases
the complexity of the model.

The perplexity can be lowered even further by iterating the learning process in the
batch phase. As is apparent from figure 5.2, around 10 iterations are sufficient to get
close to the minimum perplexity.

5.3 Effect of maximum depth

Figure 5.3 illustrates the effect of varying the maximum trie depth on the space needed
for the model as well as its performance. As could be expected, the number of states

24

5.3 Effect of maximum depth

1,8

-
(o]

—
N

0 5 10 15 20 25 30 35 40 45
Number of iterations

Avg. perplexity [bits]
ES

/

— test set — training set

Figure 5.2: Average perplexity of HPV E2 genes during the batch learning phase.

first grows exponentially with the trie depth, than starts to trail off, as not all trie nodes
up to the maximum depth are actually created. With the increase in model complexity
of course comes better performance, although for trie depths greater than 7 the average
perplexities of the training set and the test set start to diverge, hinting to overfitting
taking place. Nevertheless, even for bigger trie depths, the test perplexity still decreases.

1000000 2
1,75
100000 o—2
/ @ 1.5
[2] =
< =)
£ 10000 > 12 ‘0\
Y X
o ()
2 / g \Q
Ke) [
1000 Q
g o 0,75 \
z S
< 05
100 o
0,25
10 0
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Maximum depth Maximum depth

O test set O training set

Figure 5.3: Number of states and minimum average perplexity for different maximum
trie depths.

25

5 Evaluation

5.4 Gene searching

The “real-world” test of the model and the accompanying search method is searching
for genes in a genome and gene database. Using the data sets described in section 5.1,
the four genes were searched among the coding sequences described by annotations as
well as in the whole genome sequences. Table 5.2 summarizes these results. Because
the sequence model is position-independent, it cannot capture well the start and end
positions of the target gene in the genome sequence, therefore the search hits in the
genome sequence are not completely accurate. Therefore, in the table the root mean
square error (RMSE) for the start base in the genome is given. Because the prototype
does not supported genome search on the complement DNA strand yet and several of
the HSP70 genes were lying on it, no value for the RMSE is given for HSP70.

It should be noted that the results could be improved by using a cutoff based on
the significance measures described in section 4.3.1, discarding search hits with lower
significance and decreasing the chance of false positives.

Gene Rate RMSE
HPV E1 | 98,40% | 179
HPV E2 | 86,17% | 553,65
HPV L1 | 92,93% | 159,138
HSP70 73,75% | n/a

Table 5.2: Results of gene searching among the coding sequences and in the genome
sequence.

26

6 Conclusion

6.1 Further work

While the prototype implemented for this work reads EMBL and FASTA files, it could
be integrated directly into a sequence database software, like ARB [12]. This would
allow for better ease of use in searching for genes, by directly marking the found search
hits.

From an algorithmic standpoint, the quality of search results could be improved by
employing a more sophisticated base model, for example one that takes the natural
abundance of nucleic acids into account.

Last, searching in a whole genome sequence suffers from accuracy problems as seen in
section 5.4. To alleviate this problem, a stochastic gene finder model [10] could be used
in combination with the suffix trie HMM to increase the accuracy of genome sequence
searches.

6.2 Summary

In this work, a way was presented to search in sequence databases using a stochastic
model constructed from already known sequences. This allows to search for example in
genome files with or without annotations describing coding sequences, ranking the search
results as well as allowing an assessment of the accuracy of the search. The stochastic
nature of the model here provides a sound foundation for these assessments, while the
inference algorithms used scale well with bigger sequence databases and can easily be
parallelized.

The model can be used as a tool aiding scientists in looking for homologuous sequences
in large databases, complementing simple description searches.

27

6 Conclusion

28

Bibliography

1]

[10]

[11]

[12]

The statistics of sequence similarity scores [online]. Available from: http://www.
ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403-410, Oct 1990.

J. L. Bentley. Programming Pearls. Addison-Wesley, Inc., 1st edition, 1986.

S. R. Eddy. A probabilistic model of local sequence alignment that simplifies statis-
tical significance estimation. PLoS Computational Biology, 4(5):¢1000069, 05 2008.

J. A. Grice, R. Hughey, and D. Speck. Reduced space sequence alignment. Computer
applications in the biosciences, 13(1):45-53, Feb 1997.

D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Jan 1997.

S. Karlin and S. F. Altschul. Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes. Proceedings of the
National Academy of Sciences of the United States of America, 87(6):2264-8, Mar
1990.

S. Karlin and S. F. Altschul. Applications and statistics for multiple high-scoring
segments in molecular sequences. Proceedings of the National Academy of Sciences
of the United States of America, 90(12):5873-5877, Jun 1993.

A. Krogh. An introduction to hidden Markov models for biological sequences. In
S. L. Salzberg, D. B. Searls, and S. Kasif, editors, Computational Methods in Molec-
ular Biology, pages 45-63. Elsevier, 1998.

A. Krogh, I. Mian, and D. Haussler. A hidden Markov model that finds genes in E.
coli DNA. Nucleic Acids Research, 22(22):4768, 1994.

J. Lawless. Statistical models and methods for lifetime data. Wiley New York, 1982.

W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, et al. ARB: a software
environment for sequence data. Nucleic Acids Research, 32(4):1363, 2004.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. In Readings in speech recognition, pages 267-296. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

29

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html

Bibliography

[14] W. L. Ruzzo and M. Tompa. A linear time algorithm for finding all maximal scoring
subsequences. In Proceedings of the Seventh International Conference on Intelligent
Systems for Molecular Biology, pages 234—241. AAAI Press, 1999.

[15] T.F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195-7, Mar 1981.

[16] C. Tarnas and R. Hughey. Reduced space hidden Markov model training. Bioin-
formatics, 14(5):401-406, Jun 1998.

[17] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.

[18] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal
of computational biology, 1(4):337-348, 1994.

[19] R. Wheeler and R. Hughey. Optimizing reduced-space sequence analysis. Bioinfor-
matics, 16(12):1082-1090, Dec 2000.

30

	1 Motivation
	2 Other sequence search methods
	2.1 Sequence alignment methods
	2.2 HMMER

	3 Suffix trie HMMs
	3.1 Hidden Markov models
	3.2 HMM structure
	3.3 Inference
	3.4 Model construction
	3.4.1 Parameter estimation
	3.4.2 Suffix trie construction

	3.5 Optimizations for long sequences

	4 Gene searching with suffix trie HMMs
	4.1 Base model
	4.2 Coding sequence ranking
	4.3 Whole genome searches
	4.3.1 Search hit significance

	5 Evaluation
	5.1 Data sets used
	5.2 Model convergence
	5.3 Effect of maximum depth
	5.4 Gene searching

	6 Conclusion
	6.1 Further work
	6.2 Summary

