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Abstract

Centralized access to data sets in E-Science communities like astrophysics is often en-
cumbered by performance bottlenecks. While distributed databases try to adress this
problem, they are facing challenges presented by query “hot spots”, necessitating load
balancing mechanisms.

In this work, we incorporate a mechanism for balancing data load as well as query
load into HiSbase, a distributed data management system for spatial data. The approach
tries to extend the design principles behind HiSbase by considering samples of not only
the data but also the expected query load in the training phase and adapting the data
dissemination schema to it, while still offering flexibility for the deployment to grid
nodes.

We define query-aware weight functions for the training phase as well as different
schemes for replication and query processing, experimentally ascertaining the adaptation
of the training phase to the query workload.
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1 Introduction

The globalization of data-based sciences. E-Science communities like astrophysics
are facing various challenges associated with the ever-growing data sets. Big astronom-
ical catalogs like the Sloan Digital Sky Survey (SDSS), ROSAT or the Two Micron All
Sky Survey (2MASS) map hundreds of millions of astronomical objects [27, 28, 25]. Up-
coming projects like the Panoramic Survey Telescope and Rapid Response System (Pan-
STARRS), which creates images consisting of 1.4 gigapixels, covering an area equivalent
to the entire sky four times a month [11], are expected to produce several terabytes of
data per day.

Global repositories for spatial data are becoming increasingly mainstream, that is, they
are getting attention from outside the academic world. Famous examples are Google
Earth1 for satellite pictures and maps and Google Sky or the WorldWideTelescope2 by
Microsoft Research for astronomical data. Both are aimed at a broad audience including
amateurs3, gathering data from various sources as well as allowing the addition of user-
generated content in the case of Google Earth.

For many publicly-funded projects in the U.S., the data sets gathered have to be
published after a grace period of one year. Publishing data has other advantages as well:
It enables cooperation with previously unknown researchers and draws public attention
to the conducted research.

However, providing centralized access can present a performance bottleneck, which is
why many institutions are imposing service restrictions, for example on the number of
results or the run time of the query, or using job queues like [14].

Another challenge is enabling exchange of data and correlation of data from different
sources like crossmatches [9] of catalogs observing different wavebands for astronomical
data. While organizations like the International Virtual Observatory Alliance (IVOA)
are defining standards for exchanging astronomical data between instituions, the tech-
nical problem of having to copy huge data sets from one location to another to perform
crossmatches still remains.

Various approaches to distributed data processing are being developed; while we are
trying to touch upon some of them in chapter 5, in the focus of this work are community-
driven data grids like HiSbase.

1http://earth.google.com
2http://www.worldwidetelescope.org
3The author estimates that he learned more about geography using Google Earth than he ever did in

school.
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1 Introduction

1.1 Application scenario

The idea behind the HiSbase system is to create a single but distributed repository for
spatial data, avoiding the bottleneck and single point of failure of a centralized system.
HiSbase presents a flexible solution for this, in that it can be deployed as a global
network distributing data from various archives or as a local grid acting like a caching
proxy for back-end data archives. There is also ongoing research to extend HiSbase to
more complicated data mining tasks than spatial cross-matches, profiting from the local
availability of data. While the examples here are taken from the domain of astrophysics,
HiSbase could also be used for other application domains dealing with spatial data, like
geology or metereology.

1.2 Goals

The central task of this thesis, incorporating mechanisms for dealing with hot spots into
HiSbase, presents some new objectives, while the old objectives still have to be kept in
mind.

1.2.1 Load balancing

The crucial point in a distributed database system is of course the proper distribution
of resource load to the available resources, namely space and processing time, in order
not to overload any of the components.

Data. Astronomical data sets typically exhibit a large data skew as in figure 1.1, in
part because the footprint area of many astronomical catalogs does not comprise the
whole sky. A distributed database system has to be able to cope with this data skew,
not only because of limited storage on each node, but also because storing a smaller
amount of data can improve cache locality, adding to the responsiveness of the system.

In order to enable reproducability, published data sets are not changed; instead, new
versions (releases) are published in regular intervals like every year. The absence of
insertions and deletions in the data set are what makes having a training phase feasible.

Queries. Analyses of queries on the SDSS catalog like [10, 24] have established that –
in addition to the data skew – the queries also exhibit a high skew, leading to query hot
spots as visible in figure 1.2. In general, the query distribution may not exactly follow
the data distribution. We are focusing on a common type of queries for astronomical
data, range queries , so strictly speaking, the query distribution is higher-dimensional
(because a rectangle has twice as many degrees of freedom as a point in the space),
but as single query areas normally cover only a small portion of the entire data space,
usually the query density can be assumed to be of the same dimensionality as the data
density.
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1.2 Goals

Figure 1.1: A highly skewed astronomical data set from three different catalogs.

Figure 1.2: Queries submitted to the SkyServer web interface in August 2006.

1.2.2 Replication

Depending on the query patterns, replication of data may be a mandatory requirement
for load balancing. Normally, replication is also incorporated for redundancy reasons;
however, this is not our main target here, as the data archives can still function as
backups in the case of data loss.

1.2.3 Overhead reduction

In order to ensure responsiveness and keep the strain on the nodes within a limit, the
number of contacted nodes to process a query should be kept minimal. This means
reducing data fragmentation by having each node store a spatially limited region.

3
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2 Background

In this chapter, in order to get a feel for the context of the task at hand, we will
first informally define the terms “hot-spot” and “heat”, particularly with regard to
our astronomical application domain. Then we will take a deeper look at the HiSbase
system, trying to identify the points where modifications are necessary to incorporate
load balancing capabilities into the system.

2.1 Hot spots

Hot spots in query processing can arise at different levels: At the data level, the query
level or the region level. We will look at each of these in turn.

2.1.1 Data level

In a spatial data distribution, there are areas that are of bigger interest to users than
others. In the astronomical domain, this may be due to interesting phenomena captured
in these areas, the availability of data from different catalogs, giving rise to possible
correlations, or simply the availability of more data.1 In section 3.2.1, we try to capture
this notion with point weight functions.

2.1.2 Query level

A query-level hot spot consists of a query that is issued repeatedly with the exact same
parameters. An example for this is the default query in the SkyServer web interface2.
However, in general, query-level hot spots are more common for exact matches as op-
posed to the range queries HiSbase was designed for. As such, they could be handled
with other methods, which are outside the scope of this work.

2.1.3 Region level

A hot spot at region level is characterized by a high query processing load (“heat”) at
the site of the node storing it. Quantitatively, heat is a function of the number (and
complexity) of the queries processed by the node as well as the amount of data relevante
to the queries.

1Conversely, areas outside the footprint of any catalog are likely to be of low interest, a “cold spot”
of sorts.

2http://cas.sdss.org/astrodr6/en/tools/search/
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2 Background

For now, we will have to make do with a semi-formal definition (Later on, we will use
a similar but more formal definition for heat-based weight functions as well as for the
evaluation of the modified training phase):

Heat := Queries×Data (2.1)

From this “equation”, we can derive several observations: First, if we are distributing
the heat equally, it means that nodes with many queries should have little data, and
vice versa.

Second, reducing heat can be achieved in two different ways: by reducing the amount
of data (splitting the region into smaller regions as in figure 2.1) or the number of queries
(using replication and load balancing as in figure 2.2).3

As a final observation, we note that mutual replication between two nodes with equal
heat does not change it. This becomes clear when we see that while the data held by
each node doubles, the amount of queries is cut in half because of query load balancing.

Figure 2.1: Splitting a region with a hot spot into smaller regions.

Figure 2.2: Replicating a hot spot across two nodes.

3Figures 2.1 and 2.2 are from [19].
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2.2 HiSbase

2.2 HiSbase

HiSbase [30, 21, 20] is a distributed data management system for spatial data built on
top of a distributed hash table (DHT), namely FreePastry4, which implements the Pastry
interface described in [17]. It can be structured into three phases running in succession:
Training, data dissemination and query processing. In the next sections, we will take a
closer look at each of these phases in turn.

2.2.1 Training

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

Figure 2.3: An exemplary data sample used for training on the data space [0, 7]× [0, 7].

The training phase uses a recursive decomposition of the data space based on quadtrees
[18, 7] to create (hyper-)rectangular regions containing approximately the same amount
of data, corresponding to leaves of the quadtree. To do this, we create a random sample
of the whole data set, retaining only the coordinates of the data space (right ascension
and declination in the astronomical domain) from the sample points.

0 1 2 3 4 5 6 7
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7

Figure 2.4: Quadtree with a maximum of two points per leaf.

Starting with a degenerate quadtree consisting of only one leaf, which contains the
complete training set, we repeatedly split up the leaf with the highest number of points,

4http://www.freepastry.org
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2 Background

until the desired number of leaves is reached. There are various strategies for choosing
the split point described in [22]; among them, the most common are picking the middle
point of the region or the median in all dimensions of the points.

0
1 2

3 4

5 6

Figure 2.5: Linearization of the Quadtree using the Z-order.

The quadtree is linearized with a Z-curve [15] by traversing the tree in a depth-first
manner and assigning a sequential region ID in turn to each leaf visited, yielding a
linear ordering of the regions. An example for the training phase from [20] can be seen
in figures 2.3 to 2.5.

It should be noted that the training phase is independent of the actual set of nodes;
it just creates a histogram of the data distribution which will be used later on.

2.2.2 Data dissemination

Compared to a regular hash table, the actual assignment of the data to the peers in a
DHT works indirectly by applying a hash function to the data items, mapping them onto
the abstract key space of the DHT. As this would destroy the spatial locality properties
of the data, we map the regions regularly-spaced on the key space, which is a ring in
the case of Pastry. Similarly, each peer is assigned a random identifier on the key space.
The DHT takes over routing a message with a given identifier to the peer nearest to it
(in the sense of the proximity metric, which is the euclidean distance on the ring for
Pastry).

Every peer is now responsible for the set of those regions (or identifiers) that are
routed to it, comprising an interval on the key space. Continuing the example from the
previous section, figure 2.6 shows the resulting mapping from regions to peers.

2.2.3 Query processing

To process a query, we use the histogram, which is distributed to all peers in advance,
to look up all regions intersecting the query area. By simply addressing a region on
the key space, we can use the DHT to route queries to the peer responsible for the
region. In the case of a query area spanning more than one region, we determine a
coordinator from the set of regions. The coordinator sends out requests to the other

8



2.2 HiSbase

Figure 2.6: Mapping regions (numbers) to peers (letters) on the key space.

regions, collects their responses and returns them to the original requestor, as shown in
figure 2.7. Since a peer can store more than one region (and in turn receive a query
more than once, because requests are sent out to each region individually), the peers keep
track of recently processed queries, using a unique query identifier to ignore duplicate
queries.

…

…

Coordinator

PartialQueryMsg

FullQueryMsg

PreparedQueryMsg

(a) Sending out queries

…

…

Coordinator

PartialAnswerMsg

FullAnswerMsg

(b) Collecting the responses

Figure 2.7: Parallel query processing.
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3 Histogram-centered load balancing

In this chapter, we explore a histogram-centered approach to load balancing, that is, an
approach where we incorporate the query workload into the training process and modify
the data dissemination and query processing phases to adapt to the histogram obtained
in the training phase. We try to extend the original design, which is also peer-agnostic,
meaning that the training phase does not take into account the actual set of peers.
Dynamic approaches which measure the actual query load at runtime and try to balance
the load based thereon are also explored, albeit more shortly.

After presenting the main ideas this approach is based on, the following sections
respectively explain the modifications to the training, data dissemination and query
processing phases needed to put the approach into effect.

3.1 Overview

First, we note that achieving a good load balancing for queries without using replication
can be – depending on the actual query load – difficult, if not impossible. This is of
course due to hot-spots that cannot be further decomposed, for example because the
queries encompassing them are bigger than the regions.

(a) Non-overlapping (b) Overlapping

Figure 3.1: Decomposition of the key space into non-overlapping (primary) and overlap-
ping intervals (comprising replicated as well as primary data).

If we want to incorporate replication into our data dissemination scheme, we first
look at the scheme without replication and try to generalize from there. In the DHT
system, each peer covers an interval of ID’s in the key space, which together partition
the complete key space. The obvious way to generalize this is to have the peers covering

11



3 Histogram-centered load balancing

overlapping intervals on the key space, as in figure 3.1. The length of the intervals here
can be chosen in such a way that every peer has approximately the same amount of
data, thus also evening out the data distribution.

In order to achieve the desired degree of replication, the peers have to be distributed
more densely in regions with a high quantity of queries, compared to the approach only
focused on data distribution. We do this by using the anticipated query workload in the
training phase to split regions with a higher number of expected queries further than
in the normal training. This way, areas with high query density are split into more
regions, which later on provides for more peers being mapped into the area, because
of the uniform distribution of regions and peers on the key space. The query workload
can be gathered for example from query logs during a first, query-unaware deployment.
Considering the data and query densities over all regions, we to approximate the inverse
of the query density with the data density in order to achieve an equal heat distribution,
in accordance with equation 2.1.

It should be noted that by still covering a whole interval of identifiers (and therefore
regions), the actual area covered by a peer is expected to retain its spatial locality, even
when “over-splitting” regions with a high query load. Thus, while the number of regions
affected by a query may go up, the actual number of peers needed to answer the query
should stay low.

3.2 Training

The normal training process chooses the leaf to split based on the number of points, so we
generalize this to a weight function, splitting the leaf with the biggest weight. This weight
function can also take into account the expected query workload. While the weight
function used for this purpose operates on leaves, we first examine weight functions for
points and queries, which serve as building blocks for the leaf weight functions.

3.2.1 Weighting points

Modeling the query distribution. Weight functions for data points are based on the
assumption that some areas of the data space are more “interesting” than others to
clients of the system and therefore attract more queries. Hence, we construct a distri-
bution over the data space and define the weight of a data item as the density at this
point. The corresponding generative model for the queries would pick a random sample
from this query distribution and construct a query area around this point.1

Some aspects of this distribution could be predicted from the data distribution; for
example, because researchers are interested in correlations between different data sets
for the same area of space, an area which is covered by many catalogs could be expected
to be of higher interest and therefore the target of more queries. In general, though, the
“interestingness” is difficult to measure in any way but empirically.

1Which is how we constructed a synthetic workload for a uniformly distributed data set in chapter 4.
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3.2 Training

Weight functions. Calculation of the value of the weight function for a point p is based
on the corresponding query density at this point. If we model the query distribution via
a set of training queries Q, the weight function wQ is defined over the number of queries,
whose query area Aq contains the point:

wQ(p) := f(|{q | p ∈ Aq}|) (3.1)

where the counting function f is an affine function of the form

f(x) := λ · x+ σ (3.2)

As a simple example for f , we choose f(x) = x + 1. The reason for using an affine
function over a linear function is to assign a positive weight to points which fall outside
of any query area. In the complete absence of training queries, i.e. Q = ∅, this weight
function has a value of 1 for every point, and thus is equivalent to the standard query-
unaware weight. In general, the slope λ of the counting function serves as a weight
factor for the number of queries, with the offset σ signifying the default point weight .
The value of λ can be chosen depending on the catalog the point originated from, so
as to also take into account the actual space needed to store the complete point, for an
even more accurate data load balancing.

Because of the small size of the sample query areas, a high number of queries would
be needed in order to completely cover the data space, particularly in the astronomical
application domain. For example, the most frequent area for a query on the SkyServer
web interface has a diameter of 0.025 arc minutes, which means that at least 156 million
queries would be necessary in order to cover every point in the whole [0, 360]× [−90, 90]
square degree space. For a random and more skewed query distribution (which we are
interested in), the number of queries needed to accurately cover the whole data space
would be even higher.

The effect of using a smaller number of training queries becomes clear on points outside
of the areas of the training queries: Such a point is assigned the default, minimum point
weight, although it may well be lying in an area with a high query density, possibly
leading to unwanted hot spots when handling a “real” query workload. This problem of
unexpected lower performance on previously unseen data sets is similar to the problem
of overfitting in density estimation, where the assumed model is adapted too strongly
to the training data instead of the actual target density.

To overcome this problem, instead of the original query areas, “blown up” versions
Âq are used, which are scaled around their middle point by a constant factor φ. To
compensate, the weight factor λ is reduced by approximately the same factor. This
corresponds to a simple variant of blurring the distribution.

The new weight function is the following:

wQ(p) := f(|{q | p ∈ Âq}|) (3.3)

Even with this additional smoothing, getting the parameters φ and λ right can be
quite difficult and may often require multiple iterations of training and testing. Another

13



3 Histogram-centered load balancing

approach would be to move away from a non-parametric model to a simpler one that
uses different resolutions for sampling the query density, which eventually gives rise to
the heat-based weight function defined in section 3.2.3.

3.2.2 Weighting queries

Weighting queries by a set of points P works along the lines of weighting points by a
set of queries as defined in the previous section. The point-based weight function for a
query q is defined as follows:

wP (q) := f(|{p | p ∈ Aq}|) (3.4)

The duality between weighting points and queries. Using a linear counting function
f and the indicator function 1[ϕ], which is 1 if the formula ϕ is true and 0 otherwise,
we can write the weight functions in the following way:

wP (q) =
∑
p∈P

λ · 1[p ∈ Aq]

wQ(p) =
∑
q∈Q

λ · 1[p ∈ Aq]

for a set Q of queries and a set P of points. Therefore, summing over the weight
functions, we get: ∑

q∈Q

wP (q) =
∑
q∈Q

∑
p∈P

λ · 1[p ∈ Aq] =
∑
p∈P

wQ(p) (3.5)

This equation could also be extended to affine counting functions.

3.2.3 Weighting leaves

Weighting whole leaves contains the central idea of the modified training process, as
the training process now tries to even out the weight distribution over all regions rather
than simply the number of points.

When weighting a leaf l, we associate with it as usual the set Pl of all points contained
in its area, and also the set Ql of all queries intersecting it. The easiest weight function
sums over all point weights:

wQp(l) =
∑
p∈Pl

wQl
(p)

or over all query weights:

wPq(l) =
∑
q∈Ql

wPl
(q)

which is roughly equivalent according to eq. 3.5.

14



3.3 Data dissemination

A heat-based weight function. Another possible weight function, wpq, combines queries
and points into a measure of the heat, as defined in equation 2.1:

wpq(l) := f(|Ql|) · |Pl| (3.6)

where f is a counting function like in section 3.2.1. An offset for the number of points
is not necessary, and the scaling factor for the number of points could be incorporated
into f . When using a counting function with an offset of 1, this weight function is again
equivalent to the default method in the absence of any training queries.

Compared to the approach using the query-based point weight function, this weight
function corresponds to blowing the query areas up to the full extent of the leaf area,
which is a coarse method of blurring the query distribution, adapted to the data distri-
bution.

3.3 Data dissemination

The data dissemination phase is modified by incorporating an extra replication phase,
usually after the normal data staging is completed and every peer has its own primary
data. When replicating a region from peer B, peer A first sends a request to peer B.
Peer B then returns the data and also stores the identity of peer A, which means that
a peer knows the locations of all replicas of its own regions.

The data for replicated regions is stored alongside with the primary data. For the
purpose of query processing, replicated and original regions are treated identically.

For negotiating the actual replication scheme determining which peer replicates which
region there are different strategies, which we look at in the following sections.

3.3.1 Static strategy

In keeping with the static approach to data dissemination already used in HiSbase, we
first look at a static replication strategy. For that, we define a configuration parameter
data capacity , whose base value Cbase is the total amount of data divided by the expected
number of peers.

After the primary data dissemination phase, if the total amount of data stored by
a peer is less than its data capacity, the peer replicates neighboring regions until its
capacity is saturated. Choosing neighboring regions to replicate has the advantage of
avoiding data fragmentation, as the interval on the key space covered by the peer is
simply extended.

An example from [19] can be seen in figure 3.2. Region 5 in the query-unaware
histogram contains a hot spots, so it is split up into four regions. As all the regions in
the original histogram stored about the same amount of data, the newly created regions
contain less data than the other regions, so the peers covering them have free capacities,
which they fill by covering additional regions. After replication, the original region 5 is
now covered by three peers, which can use load balancing to distribute the query load
among them.

15



3 Histogram-centered load balancing

0

65

1

3 4

2

(a) Query-unaware (b) Query-aware

(c) Query-aware with replication

Figure 3.2: Data dissemination schemes using static replication. Solid squares indicate
primary regions, hatched squares replicated ones.

Because of the normal variations in the data amounts stored by the peers, peers
which just by chance have a lower amount of data also start replicating additional
data, achieving an even smoother data distribution at the cost of possibly unnecessary
replication. If this is not desired, the data capacity can be set to a lower value than
Cbase.

Likewise, if the data capacity is set to a higher value, one can expect a “basic” replica-
tion unaware of the query workload: A replication factor of n can be achieved by setting
the data capacity to n · Cbase.

3.3.2 Dynamic strategy

Contrary to the static replication strategy described in the previous section, the normal
replication approach used in a DHT is a more dynamic one like in [5], based on the
actual query load at runtime. In the context of HiSbase, this would mean that peers

16



3.4 Query processing

with a high query load try to get other peers to replicate their regions. However, this
presents several difficulties:

First, for each region it would have to be determined when to replicate it. Because
burdening peers already working at full capacity even more with the task of replicating
other regions is undesirable, the query load on a peer would have to be taken in com-
parison to the load on the other peers. Furthermore, for short spikes in traffic the better
approach would probably be to “sit them out” instead of initiating costly data transfers.

Likewise, if a region needs to be replicated, it can prove difficult to find a suitable peer
as a target for replication. While peers could announce free capacities via a broadcast
mechanism like Scribe [4], the task of choosing a peer therefrom still remains. Because
of the spatial locality, neighboring peers are likely to have the same query load, so
replication wouldn’t help in alleviating it. On the other hand, replicating a region at
the site of a distant peer (on the keyspace) could lead to data fragmentation.

In addition, a mechanism would be necessary for freeing resources no longer needing
to be replicated, because otherwise the peer databases would fill up with replicated data
until they could no longer accept new replicated regions.

By treating replication as an offline rather than an online problem, we can avoid most
of these difficulties; at the same time, dynamic replication for HiSbase remains a topic
of ongoing research.

3.4 Query processing

In order to deal with replicated data and avoid duplicate results during query processing,
a sequential processing strategy as illustrated in figure 3.3 has to be employed rather than
the normal parallel strategy described in section 2.2.3. This means that the coordinator,
instead of sending out all requests for regions at once, forwards the request to one other
peer, who processes the query and in turn forwards it to another peer, until all regions
relevant to the query have been processed. The database itself can still be accessed in
parallel.

Before the query is issued to the database, it has to be rewritten to restrict it to
regions not processed yet (figure 3.4), because otherwise duplicated regions would run
the chance of being processed by more than one peer. As a side effect of the sequential
processing strategy, keeping track of recent queries is no longer necessary, as every peer
is contacted at most once for one query.

3.4.1 Load balancing using routing

While correctly working for replicated data, the processing algorithm described so far
does not yet offer any actual load balancing capabilities. The first variant for that
uses the routing mechanism built into the DHT: On the route to its destination, the
intermediate peers try to answer a query as early as possible instead of simply forwarding
it. If some part of the query can already be processed, the whole query never arrives at
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…

Coordinator

FullQueryMsg

PreparedQueryMsg

SequentialQueryMsg

Figure 3.3: Sequential query processing.

its original target; instead, the intercepting peer completely takes over query processing,
picking a new region to forward the query to if any unprocessed regions remain.

Because rerouted queries never even arrive at their destination, this strategy is best
suited for workloads with high numbers of low-complexity queries, similar to DNS load
balancing for web servers.

The drawback for this strategy is that it depends on the structure of the overlay
network; in particular, it needs a network topology with a certain diameter. Small Pastry
networks tend to use direct connections for performance reasons; artificially lowering the
number of direct connections (for example, by reducing the size of the leaf set in Pastry)
could impede the routing performance.

(a) Peer 1 (b) Peer 2

Figure 3.4: Query rewriting with the sequential query processing strategy. The original
query (yellow) is rewritten at the site of the second peer in order to restrict
it to regions not processed yet (red).
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3.4.2 Load balancing using delegation

Another approach is to delegate queries to another peer replicating one of the queried
regions, as shown in figure 3.5. This approach offers much flexibility, as the primary
peer can choose any one of the peers replicating the targeted regions as well as itself to
further process the message.

…

Coordinator

SequentialQueryMsg

FullQueryMsg

PreparedQueryMsg

Replicating Peer

Figure 3.5: Load balancing using delegation with the sequential processing strategy.

In order to avoid unlimited delegation, a delegated query has to be processed in the
next step and cannot be further delegated. However, after processing, the remaining
query can be forwarded again to another peer.

When processing a query, every peer uses its primary as well as its replicated regions in
order to minimize the number of peers to contact and therefore the number of database
accesses needed.

Compared to the previous one, this strategy is more suited for small numbers of
high-complexity queries (similar to front-end proxies for large application servers in the
context of web servers). Incidentally, this is also the direction for future extension of
HiSbase to more complicated distributed data mining tasks.

It should be noted that the two load balancing strategies described here are not
mutually exclusive, as they leverage different aspects of the query processing mechanism
and therefore could very well be employed both at the same time.
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In this chapter, we describe the evaluation process we used to assess the feasibility of
the query-aware training process, detailing the experimental setup as well as comparing
the obtained results to our expectations.

4.1 Experimental setup

We conducted an evaluation of the modified training process using our HiSbase pro-
totype in Java on two different data sets from the astronomical domain, together with
corresponding query workloads. Because evaluating the actual performance of the whole
system is subject to random fluctuations owing – among other factors – to the random
placement of peers on the key space, we restricted the experiments to the training phase,
leaving a “real-world” performance evaluation to further research.

4.1.1 Data sets

Observational data. The first data set consists of a 0.1% sample from subsets of the
ROSAT, SDSS and 2MASS catalogs (already shown in figure 1.1), together making for
about 150 000 data points. The associated query workload was constructed from queries
submitted to the SkyServer web interface during August 2006 [10]. Because the biggest
part of the queries uses radial searches, we constructed similar rectangular queries from
them using the bounding box of the original circular query area. Queries with the
default search parameters for the web interface were removed from the query set, as
this particular query alone made up 12% of the whole query log. Out of the remaining
queries, 1 000 000 were used for training and 100 000 queries for testing. Both the data
and the query workload exhibit a highly skewed distribution, as evidenced in figures 1.1
and 1.2 in the introductory chapter.

Simulation data. In order to assess the effect of query-aware training on uniformly
distributed data with a high query skew, we used a 0.1% data sample (figure 4.1) from
the millennium simulation [26] consisting of about 150 000 points distributed in a roughly
uniform manner on the area [−45◦, 45◦]× [−45◦, 45◦]. The query areas were artificially
generated with their midpoints (px, py) following a 2-dimensional Gaussian distribution
with mean (0, 0) and variance chosen in such a way that 90% of the midpoints fall into
the square area in the center taking 10% of the space. The actual query areas were
then constructed around the midpoints from (px − r, py − r) to (px + r, py + r) with
the query “radius” r chosen randomly from {0.025, 0.1, 0.2, 0.25, 0.5} arc minutes, which
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Figure 4.1: The uniformly distributed simulation data set from [26].

correspond to the 5 most frequent query radii on the SDSS catalog. In this way 10 000
queries were generated for training and 1 000 queries for testing the resulting histograms.

4.1.2 Expected results

As a direct effect of the modified training process, we expected regions with high query
load to be split further, adapting to the query workload used in training.

For a quantitative evaluation, we examined again the heat for the histogram regions
as defined by the heat-based weight function wpq in equation 3.6, using the set of testing
queries as defined in the previous section.1 Basing the quantative evaluation on the
notion of heat is motivated by the assumption that more data inside a region results in
more work when processing a query intersecting this region, even if the query area itself
does not contain all of the points stored inside the region.

We expected an overall reduction in hot-spots, as well as an even distribution of the
remaining heat. For the former, we calculated the total heat over all regions, for the
latter we constructed Lorenz curves and calculated the Gini coefficient as in [16], which
is defined as the area between the Lorenz curve and the diagonal.

4.1.3 Testing parameters

Weight function. As a baseline we used the uniform weight function wp which counts
the number of points, comparing it to the query-based point weight function wQp with
various parameters as well as the heat-based leaf weight function wpq. For the weight
function wQp we set the default weight σ = 1 and the weight factor λ = 1 for the uniform
data set and λ = 0.01 for the skewed data set, as we used a much bigger query set for

1Because the data set is known in advance – contrary to the query workload – we used the same data
set for training and testing.
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it. For the uniform data set, we varied the query scaling factor φ between the values 10,
50, 100, 200 and 400, and between the values 10, 20, 40 and 80 for the skewed data set.

Histogram construction. We constructed histograms with 16 (42) to 65 536 (48) leaves
using the standard splitting strategy from [22] as well as the median heuristic. When
using the latter, we based the computation of the median only on the data points,
without taking into regard their weight.

Amount of training queries. In analogy to [22], in a separate set of experiments we
varied the amount of queries used for training, using 5% of the query workload as well as
10 to 90% in increases of 10% for training and the rest for testing. We adjusted for the
different amount of test queries by dividing the heat for a region by the total number of
testing queries, resulting in a “relative” heat value.

Amount of training data. We also conducted the same experiments using bigger sam-
ples of the data sets, namely 1% and 10% samples. As the results obtained in these
experiments were quite similar to those with the 0.1% sample, we only present the latter
in the following.

4.2 Results

Direct effects. The effect of using query-aware training on the observational data set
can be seen in figure 4.2, where we compare the histograms created with uniform (wp)
and heat-based (wpq) weight functions. Compared to the query-unaware histogram, we
can clearly see an imprint of the W-like shape visible in the query workload in figure
1.2, suggesting that the histogram is adapted to the query workload.

With the uniformly distributed data set, the effect on the data density can be seen
more clearly, for example in figure 4.3. For wpq, the amount of data per region is clustered
into three bands, because splitting a histogram leaf exactly quarters its area, thereby
also approximately quartering the amount of data, as can be seen nicely in figure 4.4
While the data distribution is non-uniform for wpq, the region load is distributed much
more evenly, with the big spikes (or “flames”) from the uniform weight function being
smoothed out.

Quantitative evaluation. As can be seen in figures 4.5 and 4.6, the overall best results
were achieved with the heat-based weight function wpq. The parameters for wQp prove
quite difficult to tune, as was hinted at in section 3.2.1; using the wrong parameters can
lead to either no difference to query-unaware training or to suboptimal results. We can
see this in figure 4.4, where in the leftmost histogram a scaling factor of σ = 10 does
not change the training process at all. In the next histogram, with σ = 50 some regions
near the center are still not split up enough to reduce the effect of the query hot spot
in the center, leaving a “burn mark”. When increasing σ even further, the regions in
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(a) Query-unaware (b) Query-aware

Figure 4.2: Histograms of the observation data set generated with query-unaware and
query-aware training, respectively.

the center are split up, but at the expense of the regions lying further outside, resulting
in artificial hot spots outside the center. Using the heat-based weight function in the
rightmost histogram yields the best distribution of heat.2 More results can be found in
appendix A.

Figures 4.7 and 4.8 show that using only a small part of the available queries for
training is already sufficient to achieve good values for the Gini coeffient or the total
heat, so in analogy to the data sampling from [22], sampling queries in combination with
the heat-based weight function seems to be an apt way to obtain an approximation of
the expected query workload.

All in all the results seem to show the feasibility of the query-aware training appraoch
and give reason for hope that the histogram-based approach leads to adequate load
balancing.

2Which is not that surprising, as the heat-based weight function is designed specifically for this task.
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(a) midpoint splitting

(b) median splitting

Figure 4.3: Data density and region load (heat) over 4096 regions of the simulation data
set.

(a) wp or wQp,φ=10 (b) wQp,φ=50 (c) wQp,φ=400 (d) wpq

Figure 4.4: Visualization of the heat generated by histograms over the uniform data set
created with various weight functions.
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Figure 4.5: Lorenz curves for histograms with 1024 regions over the simulation data set,
created using midpoint splitting.
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5 Related work

Distributed data processing. In the realm of astrophysics, different ways for dis-
tributed data processing are being developed. The SkyQuery web service described
in [3] provides query processing for distributed astronomical data sets using sophisti-
cated query scheduling algorithms [29] to optimize throughput. Research is ongoing to
implement pipelining on top of VOSpace services [8] to avoid congestion of available sys-
tem resources. In a sense, this approach is orthogonal to the approach used by HiSbase:
While HiSbase first distributes data and then routes queries to the data, the proposed
VOPipes approach first sets up the processing scheme and then feeds chunks of data
into the “pipes”.

Load balancing. Much of the work in load balancing for distributed systems is based
on skip graphs [2], for example [1] and [23]. Skip graphs, which are randomized data
structures based on skip lists, allow arbitrary identifiers on the key space (rather than
pseudo-random hash values), as the key space does not need a metric but only a to-
tal order on the keys used (like for example the Z-order of the quadtree leaves in the
histogram). However, in order to even out data skew, the distribution of peers has to
follow the data distribution, which is difficult for the decentralized placement of peers.
In comparison, metric DHT’s like Pastry can use random identifiers on the key space,
which can be assigned independently.

In [13], an approach similar to skip graphs is presented, insofar as it also uses an order
preserving routing mechanism, so the same issues as for skip graphs apply.

HotRoD [16] stores replicates on a second, displaced ring but does not deal with data
skew. P-Ring [6] uses peers storing no data at first as “helper peers”, which then pick
up part of the data stored by an “owner peer” in order to even out data skew. While
HiSbase supports a similar notion by utilizing free data capacities, we use them for
replicating data, having already addresed the data skew in the training phase. P-Ring
on the other hand does not offer replication capabilities.

Some of the issues associated with replication of data are adressed in [12], like ensuring
consistency in the face of data updates. However, the use of versioned data sets in
astronomy eliminates this problem.
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6 Summary

In this thesis we presented a histogram-centric approach to load balancing in a dis-
tributed data management system.

During the training phase, we artificially thin out the data distribution in regions with
high query load. For that, we define query-aware weight functions that are used together
with a sample of the expected query workload to even out the “heat”, a measure of the
expected load, over the regions instead of the pure data distribution.

As peers with high query load and little data replicate the data among themselves,
requests can be delegated to replicating peers in a sequential query processing strategy.

The HiSbase system presents a flexible framework for using different strategies for
data dissemination as well as query processing. First benchmarks of the training phase
show promising results for the efficiency of the complete system.
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Figure A.1: Gini coefficients for the observational data set.
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Figure A.2: Gini coefficients for the simulation data set.
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Figure A.3: Total heat for the observational data set.

35



A Benchmark results

 100

 1000

 10000

 100000

 1e+06

 1e+07

16 64 256 4096 16 384 65 536

To
ta

l h
ea

t

Number of regions

wp
wQp

, scaling factor 10
wQp

, scaling factor 50

wQp
, scaling factor 100

wQp
, scaling factor 200

wQp
, scaling factor 400

wpq

(a) Midpoint splitting

 100

 1000

 10000

 100000

 1e+06

 1e+07

16 64 256 4096 16 384 65 536

To
ta

l h
ea

t

Number of regions

wp
wQp

, scaling factor 10
wQp

, scaling factor 50

wQp
, scaling factor 100

wQp
, scaling factor 200

wQp
, scaling factor 400

wpq

(b) Median splitting

Figure A.4: Total heat for the observational data set.
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nerl, J. Englhauser, R. Gruber, F. Haberl, G. Hartner, G. Hasinger, M. Kürster,
E. Pfeffermann, W. Pietsch, P. Predehl, C. Rosso, J. H. M. M. Schmitt, J. Trümper,
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